|
| DOE-STD-1128-98
Guide of Good Practices for Occupational Radiological Protection in Plutonium Facilities
Table 6.7.1 Spontaneous Fission Neutron Yields
Spontaneous
Spontaneous Fission
Fission Yield,
Half-Life,
n/sec-gram
years
Isotope
Total Half-Life
232
1.41 x 1010 y
>1 x 1021
>6 x 10-8
Th
8 x 1013
232
U
71.7 y
1.3
233
1.59 x 105 y
1.2 x 1017
8.6 x 10-4
U
2.45 x 105 y
2.1 x 1016
5.02 x 10-3
234
U
7.04 x 108 y
3.5 x 1017
2.99 x 10-4
235
U
236
2.34 x 107 y
1.95 x 1016
5.49 x 10-3
U
4.47 x 109 y
8.20 x 1015
1.36 x 10-2
238
U
2.14 x 106 y
1.0 x 1018
1.14 x 10-4
237
Np
4.77 x 1010
2.59 x 103
238
Pu
87.74 y
2.41 x 104 y
5.48 x 1015
2.18 x 10-2
239
Pu
6.56 x 103 y
1.16 x 1011
1.02 x 103
240
Pu
2.5 x 1015
5 x 10-2
241
Pu
14.35 y
3.76 x 105 y
6.84 x 1010
1.72 x 103
242
Pu
1.05 x 1014
241
Am
433.6 y
1.18
242
6.56 x 106
2.10 x 107
Cm
163 days
1.35 x 107
1.08 x 107
244
Cm
18.1 y
1.90 x 109
1.0 x 105
249
Bk
320 days
2.34 x 1012
252
Cf
2.646 y
85.5
1
Adapted from NUREG/CR-5550 (Reilly et al., 1991)
Energetic alpha particles can overcome coulomb barriers in low-atomic-number
elements and create an unstable nucleus that emits neutrons. Because of the high alpha
activity of plutonium, this can be a significant source of neutrons. There are two nuclear
reactions that are of importance:
" + 18O 6 21Ne + n
(6.6)
" + 19F 6 22Na + n.
(6.7)
Table 6.8 contains the alpha-neutron yields for oxides and fluorides for the most
common plutonium and transuranic nuclides. Note that the neutron yields are
normalized per gram of nuclide, not per gram of compound. To obtain the yields per
6-15
|
Privacy Statement - Press Release - Copyright Information. - Contact Us |