|
| DOE-STD-1128-98
Table 6.7.1 Spontaneous Fission Nuetron Yields
Spontaneous
Sponatenous
Half-Life,
Fission Yield,
Isotope
Total Half-Life
years
n/sec-gram
Th
1.41 x 1010 y
>1 x 1021
>6 x 10-8
232
232U
71.7 y
8 x 1013
1.3
233U
1.59 x 105 y
1.2 x 1017
8.6 x 10-4
234U
2.45 x 105 y
2.1 x 1016
5.02 x 10-3
235U
7.04 x 108 y
3.5 x 1017
2.99 x 10-4
236U
2.34 x 107 y
1.95 x 1016
5.49 x 10-3
238U
4.47 x 109 y
8.20 x 1015
1.36 x 10-2
237Np
2.14 x 106 y
1.0 x 1018
1.14 x 10-4
238Pu
87.74 y
4.77 x 1010
2.59 x 103
239Pu
2.41 x 104 y
5.48 x 1015
2.18 x 10-2
240Pu
6.56 x 103 y
1.16 x 1011
1.02 x 103
241Pu
14.35 y
2.5 x 1015
5 x 10-2
242Pu
3.76 x 105 y
6.84 x 1010
1.72 x 103
241Am
433.6 y
1.05 x 1014
1.18
242Cm
163 days
6.56 x 106
2.10 x 107
244Cm
18.1 y
1.35 x 107
1.08 x 107
249Bk
320 days
1.90 x 109
1.0 x 105
252Cf
2.646 y
85.5
2.34 x 1012
1 Adapted
from NUREG/CR-5550 (Reilly et al., 1991)
Energetic alpha particles can overcome coulomb barriers in low-atomic-
number elements and create an unstable nucleus that emits neutrons.
Because of the high alpha activity of plutonium, this can be a significant
source of neutrons. There are two nuclear reactions that are of
importance:
α + 18O → 21Ne + n
(6.6)
α + 19F → 22Na + n.
(6.7)
Table 6.8 contains the alpha-neutron yields for oxides and fluorides for
the most common plutonium and transuranic nuclides. Note that the
neutron yields are normalized per gram of nuclide, not per gram of
compound. To obtain the yields per gram of compound, multiply by 0.88
for PuO2 and 0.76 for PuF4. These data are taken from NUREG/CR-5550
(Reilly et al., 1991).
6-15
|
Privacy Statement - Press Release - Copyright Information. - Contact Us |